If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44x^2+124x=0
a = 44; b = 124; c = 0;
Δ = b2-4ac
Δ = 1242-4·44·0
Δ = 15376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15376}=124$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(124)-124}{2*44}=\frac{-248}{88} =-2+9/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(124)+124}{2*44}=\frac{0}{88} =0 $
| 3(x-4)=-1/2(24-6×) | | 4=(8-x)/3 | | 15y+41=176 | | 1/30x+1/75x=1 | | 3x–10=-5x+30 | | 9x+7x-7-3=180 | | 5(3x-2)=-4(2x+1) | | -(4n+19)=6(n-9) | | 8x-2=18x-34 | | -2(3x-9)=-4x-2x+10 | | 5x-2x+x=15+x | | 3p=44 | | p2-6=4p | | 6x-40x=4x | | 9x-8=128-8x;8 | | 10-2x=19x+-5x | | 9=d+8/2 | | 5x-20=4x+-20 | | 8(2-x)-(10x-7)=35 | | -48x=-240 | | 5(1+2)m=1/2(8+20m) | | x-6=5x2 | | 3m-10=24m-5) | | 1/3-w/2=w/4-5/6 | | -18=-12+x | | -3(x+2)-3=-9 | | -1(x+6)-8=-3(x+1) | | -8x-17=180 | | (h+14)+(h-14)+14=(h+10)+14+150 | | –2g+0.4=–5.6 | | 9(x+4)+4=-6(x-5)-6 | | 8y=72. |